Shapes and Intermolecular Forces

Name: _____

Period: _____

Complete the following table: <u>You may want to draw the Lewis structure first</u>.

Molecule	Shape	Angle	3-D Image	Bond Polarity	Molecular Polarity	Hybrid	Intermolecular Force
PO ₄ ³⁻	Tetrahedral	109.5		Polar	Non polar	Sp ³	London Dispersion
BF ₃	Trigonal Planer	120		Polar	Non Polar	Sp ²	London Dispersion
H ₂ S	Bent	104.5		Polar	Polar	Sp ³	Dipole/Dipole

Answer the following questions.

- In methane (CH₄) what type of attractive forces exist between the atoms _____covalent bonds______.
 What type of attractive forces exists between the methane molecules ____london dispersion forces______.
- 2. In water (H₂O) what type of attractive forces exist between the atoms ______covalent bonds______. What type of attractive forces exists between the molecules __hydrogen bonds______.
- 3. In Nitrogen triflouride (NF₃) what type of attractive forces exist between the atoms _____covalent bonds_. What types of attractive forces exists between the molecules _____dipole/dipole forces_____
- 4. In NaCl what type of attractive forces exist between the atoms _____ionic bonds_______. Why would one not ask what type of forces exist between the molecules? __Because a crystal lattice forms in which every ion is bonded to another ion______.

- In Diamond what type of attractive forces exist between the carbon atoms _____covalent bonds_____
 Why would asking what type of forces exist between molecules not make sense? _Because a covalent network of bonds is formed______.
- 6. In a sample of Iron what type of attractive forces exist between the atoms____metalic bonds______.
- In CS₂ what type of attractive forces exists between C and S ______covalent bonds______. What is the total number of electrons shared between C and S _____4. What is the force between carbon disulfide molecules? _____london dispersion force______. How many sigma bonds exist in the entire molecule ____2. What is the total number of pi bonds that exist in the molecule ____2.
- In Oxygen (O₂) how many sigma bonds exist ___1___. How many pi bonds_____1___. What is the type of force between the oxygen atoms _____covalent bonds______ between the oxygen molecules _____london dispersion forces______.
- 9. In Nitrogen (N₂) how many sigma bonds exist? ____1 Pi Bonds? ____2 Pi Bonds? ____2. Which bond is longer the N₂ or the O₂ ___O₂. Why? __O₂ shares 4 electrons which makes is longer than Nitrogen which shares 6 electrons. More electrons that are shared the shorter the bond__.
- 10. Rank the following molecules from highest boiling point to lowest (Strength of intermolecular forces): CH₄, H₂O, PH₃, LiBr, C (Diamond)? __C (Diamond), LiBr, H₂O, PH₃, CH₄_____
- 11. What has a higher melting point? SiCl₄ or SBr₂? ____SBr₂_____ Why? _____SBr₂ has Dipole Dipole force which is stronger than the dispersion forces in Silicon tetra chloride______
- 12. In Nitrate (NO₃⁻), how many sigma bonds are present ____3____. Pi Bonds? _____1____
- 13. Sulfur forms bonds with oxygen in multiple ways. SO₃, SO₂, SO₃²⁻ and SO all exist. Rank them from longest bond to the shortest. _____ SO₃²⁻ ___ SO₃ ___ SO ____ SO _____